
MONGO DB
I N N O W A V E T E A M

(1 0 0 + S K I L L E D R E S E A R C H E R S P O O L)
" B R I D G I N G T H E G A P B E T W E E N K N O W L E D G E A N D

A P P L I C A T I O N . Y O U R M U L T I - D I S C I P L I N A R Y R E S E A R C H
P A R T N E R . "

+94 70 225 2557
Contact US :

H E L P I N G A L L T Y P E O F U N D E R G R A D E S F O R C O M P L E T I N G
T H E I R P R O J E C T S A N D A S S I G N M E N T S

(WhatsApp)

Feature Relational Databases Non-Relational Databases

Data Structure Tables with rows and columns
Various: key-value, document, column-
family, graph

Relationships Defined using foreign keys Implicit or handled separately

Schema Fixed before data entry Flexible or schema-less

Scalability
Vertical scaling (adding resources to a
single server)

Horizontal scaling (distributing data
across multiple servers)

Querying SQL Varies by model

Consistency Strong ACID guarantees Varies by implementation

Examples MySQL, PostgreSQL, Oracle MongoDB, Cassandra, Redis, Neo4j

Best for
Structured data, predictable relationships,
data integrity

Large datasets, unstructured data,
flexibility, scalability

W H A N B E F O R E U S I N G R E L A T I O N A L D A T A B A S E S

Create DB

CRUD SQL HTTP

Create INSERT POST

Read SELECT GET

Update UPDATE PUT

Delete DELETE DELETE

S Q L U S E F O R C R U D R E L A T I O N A L D A T A B A S E S

M O N G O D B

MongoDB is a document database and can be installed
locally or hosted in the cloud.

The MongoDB Query API can be used two ways:
CRUD Operations
Aggregation Pipelines

Inserting Documents

two ways intert data
1.mongosh
2mongodb driver

Project Initialization:

Creates a package.json file, essential for managing Node.js projects.
Stores project metadata (name, version, author, etc.).
Tracks project dependencies, ensuring consistent environments across
machines
.
Dependency Management:

Prepares the project for installing MongoDB drivers or tools.
npm install command relies on package.json to manage dependencies.

why we use npm init -yes before working

The command npm i mongodb will install the official Node.js driver for
interacting with MongoDB into your current project directory. Here's
what happens:

Download: It downloads the mongodb package and its dependencies
from the npm registry.
Installation: The downloaded files are placed in the node_modules
directory within your project.
Dependency Recording: An entry for the mongodb package is added to
your package.json file, which keeps track of all your project's
dependencies.
It's important to note that:

You need to be in the directory of your Node.js project when running
the command.
Ensure you have Node.js and npm installed on your system.
Running this command without previous project initialization (using
npm init -y) will still work, but it's good practice to have a package.json
file for managing dependencies.

Connect to MongoDB

1. Choose Your Method:

Mongo Shell (mongosh): A command-line interface for direct interaction.
Node.js Driver: For integrating MongoDB into Node.js applications.
MongoDB Compass: A GUI for visual interaction and data management.
Other Drivers and Tools: MongoDB supports drivers for various programming
languages and platforms.

2. Obtain Connection Information:

Local MongoDB Instance:
 Default host: localhost
 Default port: 27017
Remote MongoDB Instance:
 Obtain host name or IP address.
 Verify port number (usually 27017).
 May require authentication credentials.
MongoDB Atlas Cluster:
 Get connection string from Atlas dashboard.

5. Connect Using MongoDB Compass:

Download and install MongoDB Compass.1.
Launch Compass and create a new connection.2.
Paste connection string or provide host, port, authentication details.3.
Click "Connect".4.

connect database

Insert Data

Create database

const database = client.db('myDatabase');

Create collection

 const collection = database.collection('products')

There are 2 ways to create a collection.

insert a value
const doc = {

 name:'abc',
 price:100.00,

 brand : "a"
 }

 const result = await collection.insertOne(doc);
 console.log(result)

There are 2 methods to insert documents into a MongoDB database.

insert more value

Find Documents

Find Data

There are 2 methods to find and select data from a MongoDB collection,
find() and findOne().

find all the product - findAllProducts()

find the first product - findFirstProducts()

Querying Data
To query, or filter, data we can include a query in our find() or findOne()
methods

find all product with name - findByName(name)

find all the products with qty-findByQty(qty)

find all the products that rated user name-findByRateUser(user)

sort all products by price-sortByPrice()

filter name and after sort

Both find methods accept a second parameter called projection.

filter fields in all products-filterFields()

find all products name start with "Laptop"-findAllProductsStartsWithLaptop()

Without case sensative

//find all products name contain-findAllProductsContain(name)

//find all products name contain end-findAllProductsEndWith(name)

//sort and filter all products by price,stats with -filterSortByPriceStartWith(name)

Update and Delete Documents

To update an existing document we can use the updateOne() or
updateMany() methods.

replace

 Delete Documents

We can delete documents by using the methods deleteOne() or deleteMany().

Mongoose is an object-document mapping (ODM)
framework for Node.js and MongoDB

Connect atlas cloud

Mongoose Schema and model

Document

schema connect

+94 70 225 2557

Contact US :

H E L P I N G A L L T Y P E O F U N D E R G R A D E S F O R C O M P L E T I N G
T H E I R P R O J E C T S A N D A S S I G N M E N T S

